बीजगणित आणि त्रिकोणमिती बीजगणितातील तत्त्वे व्यापक आणि मल्टि कोणतेही स्तरीय शोध उपलब्ध आहे. मजकूर ठराविक प्रास्ताविक बीजगणित अर्थात योग्य आहे, आणि होता
विकसित flexibly वापरली जाईल. विषय रुंदी एक इन्स्ट्रक्टर कव्हर होईल काय पलीकडे जा, तरी, मॉड्यूलर दृष्टिकोन आणि सामग्री समृद्धता अनुप्रयोग कार्यक्रम विविध गरजा पूर्ण खात्री.
बीजगणित आणि त्रिकोणमिती मार्गदर्शक आणि गणित सह तयारी आणि अनुभव भिन्न पातळी विद्यार्थी समर्थन पुरवतो. कल्पना वाटेत सिंहाचा मजबुतीकरण अधिक जटिल understandings स्पष्ट शक्य, आणि प्रगती म्हणून प्रस्तुत केले जातात. उदाहरणे-सहसा धडा-ऑफर तपशीलवार, संकल्पनात्मक स्पष्टीकरण प्रति अनेक डझन, ते शिकलो केले आहे ते लागू करण्यासाठी त्यांना विचारत साहित्य मजबूत, एकत्रित पाया विद्यार्थी तयार करण्यासाठी एक संपत्ती.
व्याप्ती आणि व्याप्ती
कव्हर ठरवण्यासाठी संकल्पना, कौशल्य, आणि विषय, आम्ही विद्यार्थी प्रेक्षकांसाठी श्रेणी अनुभवी शिक्षक डझनभर व्यस्त होते. लवचिकता लक्षणीय रक्कम अनुमती दिली असताना परिणामी व्याप्ती आणि क्रम तार्किकदृष्ट्या पुढे
सूचना आहे.
युनिट 1 आणि 2 युनिट 3. सुरु काही संस्था या साहित्य पूर्वीपेक्षा शोधू शकता, इतर संस्था त्यांनी ते बांधले पूर्वीपेक्षा कौशल्य आवश्यक आहे की एक अनुयायी आहे की आम्हाला सांगितले आहे लेखक ओळखले कार्य अभ्यासासाठी तो एक पुनरावलोकन आणि पाया दोन्ही प्रदान अर्थात मध्ये.
- खंड 1: पूर्वतयारी
- आकडा 2: समीकरणे आणि असमानता
युनिट 3-6: बीजगणितातील कार्य
- आकडा 3: कार्य
- खंड 4: लिनियर कार्य
- आकडा 5: बहुपदी आणि योग्य कारणाचा कार्ये
- आकडा 6: घातांकय आणि लॉगॅरिथम कार्य
युनिट: 7-10 त्रिकोणमिती एक अभ्यास
- आकडा 7: युनिट मंडळ: न करता आणि कोसाइन कार्य
- आकडा 8: नियतकालिक कार्य
- आकडा 9: Trigonometric ओळखी आणि समीकरणे
- आकडा 10: त्रिकोणमिती पुढील अनुप्रयोग
युनिट 11-13: बीजगणित आणि त्रिकोणमिती पुढील अभ्यास
- आकडा 11: समीकरणे आणि असमानता च्या प्रणाल्या
- आकडा 12: वैश्लेषिक भूमिती
- आकडा 13: क्रम, संभाव्यता, आणि गणना सिद्धांत